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UNSTEADY FREE CONVECTION HEAT TRANSFER 

By E. M. Sparrow* and J. L. Gregg 

> 

NASA, L e w i s  Research Center, Cleveland, Ohio 

t i c a l  surface whose temperature var ies  with t i m e  i n  an a rb i t r a ry  manner. A 

quant i ta t ive  c r i t e r i o n  is derived which gives the  conditions under which unsteady 

heat - t ransfer  calculat ions can be carr ied out simply by using heat- t ransfer  

coef f ic ien ts  f o r  the quasi-steady state (instantaneous steady state) . 
a re  given f o r  Prandtl  numbers ranging from 0.03 t o  10. 

here should a l so  serve t o  define quasi-steady conditions f o r  turbulent  free- 
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coordinate measuring distance along p l a t e  from leading edge 

coordinate measuring distance normal t o  p l a t e  

transformed coordinate, 

coeff ic ient  of thermal expansion, 

2 114 114 s imi l a r i t y  var iable ,  [ gp (AT) /4 v 3 
temperature var iab le  f o r  quasi-steady s ta . te  

dimensionless temperature, (T - T,)/(Tw - T,) 
functions of -q 

s e r i e s  expansion parameters defined by  eq. (8) 

Y/x 

absolute v iscos i ty  

kinematic v i scos i ty  

density 

stream function 

Subscripts : 

i n s t  instantaneous 

qs quas i - steady 

W w a l l  

m ambient 

INTRODUCTION 

I n  a number of important technical appl icat ions,  it i s  necessary t o  com- 

pute the free-convection heat t ransfer  from a surface whose temperature changes 

with t i m e .  This very d i f f i c u l t  problem is  appreciably s implif ied when it i s  

supposed that at  each and every moment, there  e x i s t s  an instantaneous steady 

s t a t e .  Under such an assumption, the steady state relat ionships  f o r  the heat- 

t r a n s f e r  coef f ic ien t  a re  used i n  conjunction w i t h  the  instantaneous temperature 

difference t o  compute a heat t ransfer  r a t e .  It is  customary t o  apply the terrc 
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quasi-steady t o  describe t h i s  s i tua t ion  where the  t rans ien t  passes through a 

sequence of instantaneous steady s t a t e s .  

I n  r e a l i t y ,  there i s  always a. d i f f e r e n w  be tween  t.hp act.ij..al Fnst.ant.afie~i~s 

heat t r ans fe r  and the  quasi-steady value. The extent  of t he  deviation depends 

both on the r ap id i ty  of the changes i n  surface temperature and on the  response 

cha rac t e r i s t i c s  of t he  f l u i d .  C l e a r l y ,  quasi-steady heat t r ans fe r  would not 

be expected if the  changes i n  surface temperature a r e  exceedingly rapid.  

m 

a I 
El 

Because of the  tremendous p rac t i ca l  s implif icat ions associated with the  

quasi-steady assumption, it i s  important t o  know the  conditions under which it 

can be invoked with negl igible  e r ro r .  

a quant i ta t ive  c r i t e r i o n  t o  dis t inguish when the heat t r ans fe r  i s  e s sen t i a l ly  

quasi-steady. The system chcsen f o r  study i s  a v e r t i c a l  p l a t e  as pictured i n  

Figure 1. The surface temperature T, i s  s p a t i a l l y  uniform, but is permitted 

t o  take on a rb i t ra ry ,  but continuously d i f fe ren t iab le ,  var ia t ions  with t i m e .  

The ambient temperature T, is  taken as constant. 

The a i m  of t h i s  analysis  i s  t o  determine 

Resul ts  are presented here f o r  Prandtl  numbers ranging from 0.03 t o  10. 

The lower end of t h i s  range corresponds t o  l i q u i d  metals; t he  span from 0.65 

t o  1.1 i s  associated with gases; while l i qu ids  such as water, organic solvents,  

and inorganic salts have Prandtl numbers between 1 and 10. 

Previous analytical  work on unsteady f r e e  convection has beer, rather spsrce.  

Using the  Karman-Pohlhausen technique, Siege1 (I) studied the spec ia l  problem 

of a sudden s t ep  change i n  surface temperature or  heat flux. I l l ingworth (2) 

and Sugawara and Michiyoshi (3) have also analyzed s i tua t ions  involving s t ep  

changes i n  surface temperature. 

Readers who are primarily interested i n  results a r e  inv i ted  t o  pass over 

t he  sec t ion  on ANALYSIS. 
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ANALYSIS 

Governing equations and boundary conditions. - To achieve our ultimate 

goal of f inding a c r i t e r i o n  fo r  the  existance of quasi-steady conditions, we 

must first analyze the  veloci ty  and temperature d is t r ibu t ions  i n  the boundary 

layer  adjacent t o  the v e r t i c a l  p l a t e .  The problem is, of course, governed by 

the bas ic  conservation l a w s :  

which a re  the s t a r t i n g  point f o r  our study. 

these l a w s  appropriate t o  unsteady f l o w  i n  a boundary layer on a v e r t i c a l  

mass, momentum, and energy; and it is these 

The mathematical expression of 

p la te  i s  

where p = L/T, f o r  gases. The essent ia l  term i n  these equations is 

gBp(T - T,), which represents  t he  buoyancy force responsible f o r  the f r e e  

convection motion. 

been neglected i n  accordance w i t h  the  u s u a l  pract ice  i n  free convection. 

By af f ix ing  the plus-minus signs t o  the buoyancy term of equation (2), we a re  

able t o  simultaneously analyze both of the physical s i tua t ions  pictured i n  

f igure  1. 

the  case where the w a l l  temperature exceeds ambient and the boundary l a y e r  flow 

is upward. 

represents  the case where 

layer .  Throughout t he  analysis  and the presentation of r e su l t s ,  there  w i l l  

be no need t o  make any pa r t i cu la r  d i s t inc t ion  between these two s i tua t ions .  

Viscous diss ipat ion and work against  the  gravity f i e l d  have 

The l e f t  hand sketch (a), associated w i t h  the  plus sign, depicts  

The r igh t  hand sketch (b), w i t h  which the  minus s ign  is  used, 

Tw C T, and the  flow i s  downward i n  the boundary 
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The statement of the  problem is  completed by giving the boundary condi- 

t i ons  as follows: 

u = o  

v = o  

T = T w ( t )  
8 
rl 

y = o  
u + o  

T + T m  
Y - + m  (4) 

I 
E! where 

The requirement that  each veloci ty  component vanishes at  the p l a t e  surface 

a r i s e s  from the no-sl ip  condition of viscous flow (u = 0) and the imperme- 

a b i l i t y  of the w a l l  t o  mass (v = 0). 

Tw(t)  is  any arb i t ra ry ,  b u t  continuously d i f f e ren t i ab le  function of t i m e .  

Proceeding i n  a general  way, we observe that the conservation of mass 

equation (1) may be satisfied by defining a stream function 

t i ons  (ref. 4, eq. (5)) 

$ by the rela- 

Then, by replacing u and v in  favor of 9 and introducing the f o l -  

lowing new variables  
T - T, 

e =  Tw - T-’ Y =IY p Pm d y  

equations (2 )  and (3)  may be rephrased as 

( 5 )  

where AT = ITw - T,I, Ab = d(AT)/dt 

To simplify the treatment, we have neglected the var ia t ion  of f l u i d  proper t ies  

i n  l i qu ids .  

may be approximated by 

In  the case of gases, it has been supposed t h a t  the propert ies  

pp = constant, pk = constant, cp = constant, and as a 
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consequence, the kinematic v i scos i ty  i n  equations (2a) and (3a) is  evaluated 

9 I 
w 

a t  ambient conditions. 

I n  terms of these new variables ,  the boundasy conditions become 
\ 

aJl/ay = 0 

Having completed the formulation, we now turn  t o  the  task of solving the for -  

midable mathematical problem represented by the simultaneous p a r t i a l  d i f -  

f e r e n t i a l  equations (2a) and (3a) f o r  $ and 8 as functions of x, Y, and t. 

SOLUTIONS 

As has already been mentioned, the a i m  of t h i s  analysis  i s  t o  invest igate  

the conditions under which the  ac tua l  instantaneous heat t r ans fe r  deviates only 

s l i g h t l y  fiom the quasi-steady value. With t h i s  i n  mind, it i s  na tura l  t o  seek 

a so lu t ion  f o r  the temperature and velocity d i s t r ibu t ions  i n  the form of a 

s e r i e s  expansion about the  quasi-steady s t a t e .  

As a prelude t o  the  ser ies ,  w e  r e c a l l  that fo r  steady s t a t e  conditions, 

the  stream function 111 and dimensionless temperature 8 a re  wri t ten as 

111 = [ 64gp (AT) v2x3 ]'/*F (7) , e = @(d (sa) 

where 

= [ gp (AT) /4v2 ]1/4Y/x1/4 (6b) 

The var iable  7 is  the  well-known s i m i l a r i t y  parameter first used by Schmidt 

and Beckmann. 

Then, s h i f t i n g  our a t t en t ion  t o  the unsteady s i tua t ion ,  we expand 111 and 

i n  s e r i e s  about t he  quasi-steady s t a t e  ( i .e . ,  the  instantaneous steady s t a t e ) .  8 

so, 

( 7 4  
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where 

The expansion parameters Xo, X1, . . . 
arguments o r  by mathematical analysis .  

eters have a c l ea r  physical  meaning which may be represented by the following 

r a t i o  

may be derived e i t h e r  by dimensional 

A s  shown i n  the Appendix, these param- $. 
&I 

~ 

time f o r  d i f fus ion  of temp. changes across b l  
time cha rac t e r i s t i c  of w a l l  temp. changes 

where b l  is an abbreviation f o r  boundary layer. Clear ly ,  t h i s  r a t i o  w i l l  

be small when the boundary l a y e r  responds promptly t o  impressed changes i n  

wall temperature. For quickly responding boundary layers, i.e., small values 

of io, A1, . . . , equations (7a) and (b) a r e  consis tent  with the i n t u i t i v e  

f ee l ing  that the ve loc i ty  and temperature d i s t r ibu t ions  are quasi-steady. 

I n  the development which follows, it w i l l  be supposed that AO i s  sub- 

s t a n t i a l l y  la rger  than A,, Xl, . . ., and as a consequence, the series (7a) and 

(b) are truncated after the second term. 

may be met when Ab is  much l a rge r  than the  higher der ivat ives .  It is  i m -  

I n  p r a c t i c a l  terms, t h i s  assumption 

por tan t  t o  note t h a t  the re ten t ion  of addi t iona l  terms of the series would not 

al ter t h e  analysis ,  only the amount of numerical computations would be sub- 

s t a n t i a l l y  increased. 

Having set t led on a series form fo r  the  solut ions,  we now re turn  t o  t h e  

d i f f e r e n t i a l  equations (2a) and (3a). Introducing the expansions (7a) and (b) 

f o r  $ and 6 and grouping terms according t o  whether they axe multiplied by 

k 0 ,  xl, ..., we are l e d  t o  the following set of ordinary d i f f e r e n t i a l  equations: 
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0" + 3(Pr)F@ = 0 o ( 0 )  = 1, @ ( O D )  = 0 

F"' + 3FF" - 2(F')' + 6 = 0 F(0) = F' (0)  = 0, F'(-) = 0 

f:' + 3Ffg - 6F'f; + 5F"f0 - (F' + 0.57F" - eo)  = 0 

fo(e)  = f;(o) = f&) = o 

The boundary conditions have been evaluated by introducing the  s e r i e s  f o r  \Ir 

and 8 i n t o  equation (4.). 

Equations (loa) and (b) may be recognized as coinciding with the  governing 

equations f o r  the  s teady-state  free-convection problem, although here they ap- 

ply t o  t h e  quasi-steady s i tua t ion .  Numerical solutions* of t h i s  p a i r  of 

simultaneous, nonlinear, ordinary d i f f e r e n t i a l  equations has been car r ied  

out on an IBM 650 d i g i t a l  computer f o r  F'randtl numbers of 0.03, 0.72, and 10. 

Then, using these solut ions as input data, equations (lla) and (b) were a l so  

solved f o r  the same Prandt l  numbers. 

The important numerical results which a r e  used i n  the heat t r ans fe r  

calculat ions are l i s t e d  i n  t a b l e  I. 

TABLE I. - FUNCTIONS NEEDED IN HEAT 
TRANSFER COMPUT, TIONS 

0; (0)  /@ ' (0 )  

0.9785 
1.530 
3.938 

HEAT TRANSFER RESULTS 

Local and over-al l  heat t ransfer .  - The instantaneous l o c a l  heat flux at 

the p l a t e  surface qinst may be calculated by appl icat ion of Fourier ' s  l a w  

The numerical in tegra t ion  technique i s  out l ined i n  reference 5. U 
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= - (k 2)y=o = -AT (k $)y=o 

After introducing the series expansion (7b) f o r  

de f in i t i on  (6b) for  7, the expression f o r  q becomes 

8 and taking account of the 

I 
I4 

where 0' ( 0 )  , 0; ( 0 )  , . . . , a re  abbreviations f o r  (dO/dq) 7=o, . . . . 
The quasi-steady heat t r ans fe r  qqs is given by 

0' ( 0 )  

Then, t he  important re la t ionship  between the instantaneous and the quasi-steady 

heat t r ans fe r  is  found by combining equations (13) and (14), 

where w e  have evaluated lo  from the  defining equation (8). 

From t ab l e  I, it is  seen tha t  O&(O)/O'(O) i s  posi t ive for a l l  Prandtl  

numbers. Further, AT i s  always posit ive;  being evaluated as Tw - T, when 

the  w a l l  temperature exceeds ambient and as 

than ambient. So, it may be concluded from equation (15) t h a t  the instantaneous 

Tm - Tw when the w a l l  i s  cooler 

heat t r ans fe r  exceeds the quasi-steady value when the  temperature difference 

1 %  - T,l increases w i t h  time (AT > O )  and i s  l e s s  t h a n  quasi-steady when the  

temperature difference is  decreasing. 

the  f a c t  that the r a t i o  

from which it follows from equation (15) t h a t  low Prandtl  number f l u i d s  a re  

less l i k e l y  t o  experience deviations from quasi-steady heat t r ans fe r  than  are  

high Prandt l  number f lu ids .  This trend might have been in tu i t i ve ly  a n t i c i -  

pated as a consequence of the r e l a t ive ly  high thermal d i f fus iv i ty  of l i q u i d  

A fu r the r  conclusion may be drawn from 

@6(0)/0'(0) decreases s teadi ly  w i t h  Prandt l  number; 
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metals. 

neglected terms of the  s e r i e s  are very small. 

The proceeding remarks apply with f u l l  ce r ta in ty  only when the 

An a l t e rna te  form of the  r e s u l t s  may be obtained by introducing heat 

t ransfer  coef f ic ien ts  as follows: 

Then, equation (15) may be rephrased as 

Equation (15a) i s  i n  a form useful  fo r  the in te rpre ta t ion  of heat t r ans fe r  co- 

e f f i c i e n t s  obtained under t rans ien t  conditions. 

Next, we compute the heat t ransfer  Q from the  e n t i r e  surface of the  

p l a t e  by in tegra t ing  the l o c a l  heat t ransfer ,  i .e.,  

L 
Q = J o  q d x  

where t h e  p l a t e  width has been chosen as unity.  The in t eg ra l  is car r ied  out 

successively f o r  the  instantaneous and quasi-steady s i tua t ions  using q from 

equations (13) and (14) respectively,  and the r e s u l t s  may be represented as 

the  following r a t i o  

Comparison of t h i s  expression w i t h  equation (15) S ~ W W S  that  the over-all  heat 

t r a n s f e r  deviates less from quasi-steady then does the local heat t ransfer  at  

x = L. The f inding i s  made plausible  by noting knat  ti?? over-all heat t r a n s -  

f e r  includes contributions from upstream locat ions (near 

boundary layer is  thinner  and more responsive t o  impresset c h m z e s .  

x = 0) where the  

Cr i te r ion  f o r  quasi-steady heat t ransfer .  - We can now p o c c e c i  t o  f i nd  

a c r i t e r i o n  fo r  dist inguishing the  conditions under which the quasi-steady 
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re la t ionship  may be used with suff ic ient  accuracy i n  unsteady heat t r ans fe r  

calculat ions.  Suppose t h a t  an accuracy of 5 percent is su f f i c i en t  f o r  the  

l o c a l  heat t r ans fe r  f o r  many applications.  Then, from equation (15) i n  con- 
*,+ [ ji/; 

junction with t ab le  I, we are able  t o  f ind  the  values of E m  which 

lead t o  5 percent deviations of qinst from qqs. The r e s u l t s  thus obtained 

are p l o t t e d  as the  upper curve of f igure 2. Clearly, for  values of 

lower than those given by t h i s  curve, the deviation of qinst % 
frcrr, q is l e s s  than 5 percent. qs 

Alternately,  i f  an accuracy of 2 percent i s  su f f i c i en t  f o r  the l o c a l  heat 

t r ans fe r  calculat ion,  we can compute a second group of values f o r  
k J 

t o  represent the  c r i t e r i o n  f o r  quasi-steady heat t ransfer .  These resuLts  a re  

shown as the  lower curve of f igure  2. 

So, t o  determine whether t he  heat t r ans fe r  f o r  

quasi-steady, we would check whether the values of 

i n  that experiment f a l l  below the  selected curve of 

a pa r t i cu la r  experiment i s  

occurring 
L J 

f igure 2. Alternately,  f o r  
c - 

which 1/2 
design purposes, f igure  2 immediately gives the  values of 

permit appl icat ion of the quasi-steady heat t r ans fe r  re la t ionships .  

APPLICATION TO ECKIBT-SOEHNGEN EXPE;RIbE"S 

An experimental determination of f r e e  convection heat t r ans fe r  coef f ic ien ts  

on a v e r t i c a l  p l a t e  has been car r ied  out by Eckert and Soehngen (ref. 6)  asiiig 

the t r ans i en t  technique. Their apparatus consisted of a copper p l a t e  which 

wits preheated i n  a furnace and then suspended v e r t i c a l l y  i n  a i r  t o  cool by 

f r e e  convection a.nd rad ia t ion .  It was assumed t h a t  quasi-steady conditions 

ex is ted ,  s o  t h a t  t he  measurements were reported as steady s t a t e  r e su l t s .  Values 

from Eckert and Soehngen's experiments have been p lo t t ed  as a 
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v e r t i c a l  band on the lower par t  of t he  f igure .  It is  seen t h a t  the  conditions 

of the  experiment f a l l  w e l l  within both the  2 and 5 percent c r i t e r i a  f o r  quasi- 

steady heat t r ans fe r ,  thereby verifying the  supposit ion of the experimenters. 

0-J 
0 
rl 
I w 

CONCLUDING REMARKS 

S t a b i l i t y  questions. - It i s  n a t u r a l  t o  inquire  as t o  the e f f e c t  of the 

unsteady w a l l  temperature on the s t a b i l i t y  of the  f r e e  convection flow. Since 

an adequate s t a b i l i t y  analysis  of the  steady free-convection bQundary l a y e r  

has ye t  t o  be given, it would appear t h a t  such an analysis f o r  the  unsteady 

s i t u a t i o n  i s  not now within range. So, we must confine ourselved t o  i n t u i t i v e  

conjectures about the r o l e  of t he  time-dependent w a l l  temperature. 

Our i n t e r e s t  here has been i n  flows which are almost quasi-steady; t h a t  

is, i n  flows where the boundary l a y e r  is  able t o  follow t h e  changes i n  w a l l  

temperature qui te  c losely.  A t  f i rs t  thought, it m i g h t  be expected t h a t  f o r  

these conditions, the  s t a b i l i t y  of t he  unsteady flow would not be too  d i f f e ren t  

from t h a t  of t he  steady flow. 

reasonable for flows where the  temperature difference 

increasing. However, when ITw - T, 1 i s  s teadi ly  decreasing, it would seem 

I n  par t icu lar ,  t he  expectation seems qui te  

ITw - T-1 i s  s t ead i ly  

tha t  the  flow would be somewhat more prone t o  in s t ab i l i t y ;  while a flow i n  which 

I ITw - T-1 a l t e rna te ly  increased and decreased would l i ke ly  be even l e s s  s tab le .  

Application t o  turbulent  flows. - Although the  analysis  given here i s  f o r  

laminar flow conditions, the  findings may have a wider u t i l i t y .  Since the  

response of a turbulent flow should be more rap id  than t h a t  of laminar flow, 

the  c r i t e r i a  f o r  quasi-steady heat t r ans fe r  as given on f igure  2 should cer ta in-  

l y  a l s o  serve for turbulent  flow. 
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APPETJDIX 

PHYSICAL 1NTERPRF)iTATION OF lo, 11, . . 
We want t o  show that the expansion parameters lo, 11, . . ?  given by 

equation (8) a r e  r e l a t ed  t o  the r a t i o  of the  time fo r  diffusion across $he 

boundary layer  t o  the  time characterising the impressed w a l l  temperature 

changes. 

From one-dimensional diffusion theory, it m a y  be reca l led  that the  time 

required f o r  changes t o  diffuse across a layer  of thickness 

t o  

6 is proportional 

s 2 / v  (18) 
On the  other  hand, the  boundary layer thickness f o r  f r e e  convection is  given by 

where Gr, is  the Grashof number. Introducing t h i s  in to  equation (18), the 

d i f fus ion  time i s  found t o  be proportional t o  

The time character is ing the changes i n  w a l l  temperature cannot be given 

by a s ingle  quantity,  b u t  ra ther ,  w i l l  be represented by the  following s e t s  

of times 

After forming the quotient of equation (18a) with the successive members 

of equation ( Z O ) ,  we see t h a t  A0, X1, ... a r e  indeed r e l a t ed  t o  these r a t i o s .  
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Fig. 1. - Physical model and coordinates. 
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